Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation.
نویسندگان
چکیده
In a large scale screen for mutants that affect the early development of the zebrafish, 109 mutants were found that cause defects in the formation of the jaw and the more posterior pharyngeal arches. Here we present the phenotypic description and results of the complementation analysis of mutants belonging to two major classes: (1) mutants with defects in the mandibular and hyoid arches and (2) mutants with defects in cartilage differentiation and growth in all arches. Mutations in four of the genes identified during the screen show specific defects in the first two arches and leave the more posterior pharyngeal arches largely unaffected (schmerle, sucker, hoover and sturgeon). In these mutants ventral components of the mandibular and hyoid arches are reduced (Meckel's cartilage and ceratohyal cartilage) whereas dorsal structures (palatoquadrate and hyosymplectic cartilages) are of normal size or enlarged. Thus, mutations in single genes cause defects in the formation of first and second arch structures but also differentially affect development of the dorsal and ventral structures within one arch. In 27 mutants that define at least 8 genes, the differentiation of cartilage and growth is affected. In hammerhead mutants particularly the mesodermally derived cartilages are reduced, whereas jellyfish mutant larvae are characterized by a severe reduction of all cartilaginous elements, leaving only two pieces in the position of the ceratohyal cartilages. In all other mutant larvae all skeletal elements are present, but consist of smaller and disorganized chondrocytes. These mutants also exhibit shortened heads and reduced pectoral fins. In homozygous knorrig embryos, tumor-like outgrowths of chondrocytes occur along the edges of all cartilaginous elements. The mutants presented here may be valuable tools for elucidating the genetic mechanisms that underlie the development of the mandibular and the hyoid arches, as well as the process of cartilage differentiation.
منابع مشابه
Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint.
A conserved endothelin 1 signaling pathway patterns the jaw and other pharyngeal skeletal elements in mice, chicks and zebrafish. In zebrafish, endothelin 1 (edn1 or sucker) is required for formation of ventral cartilages and joints in the anterior pharyngeal arches of young larvae. Here we present genetic analyses in the zebrafish of two edn1 downstream targets, the bHLH transcription factor H...
متن کاملThe chinless mutation and neural crest cell interactions in zebrafish jaw development.
During vertebrate development, neural crest cells are thought to pattern many aspects of head organization, including the segmented skeleton and musculature of the jaw and gills. Here we describe mutations at the gene chinless, chn, that disrupt the skeletal fates of neural crest cells in the head of the zebrafish and their interactions with muscle precursors. chn mutants lack neural-crest-deri...
متن کاملhand2 and Dlx genes specify dorsal, intermediate and ventral domains within zebrafish pharyngeal arches.
The ventrally expressed secreted polypeptide endothelin1 (Edn1) patterns the skeleton derived from the first two pharyngeal arches into dorsal, intermediate and ventral domains. Edn1 activates expression of many genes, including hand2 and Dlx genes. We wanted to know how hand2/Dlx genes might generate distinct domain identities. Here, we show that differential expression of hand2 and Dlx genes ...
متن کاملmoz regulates Hox expression and pharyngeal segmental identity in zebrafish.
In vertebrate embryos, streams of cranial neural crest (CNC) cells migrate to form segmental pharyngeal arches and differentiate into segment-specific parts of the facial skeleton. To identify genes involved in specifying segmental identity in the vertebrate head, we screened for mutations affecting cartilage patterning in the zebrafish larval pharynx. We present the positional cloning and init...
متن کاملCompetition between Jagged-Notch and Endothelin1 Signaling Selectively Restricts Cartilage Formation in the Zebrafish Upper Face
The intricate shaping of the facial skeleton is essential for function of the vertebrate jaw and middle ear. While much has been learned about the signaling pathways and transcription factors that control facial patterning, the downstream cellular mechanisms dictating skeletal shapes have remained unclear. Here we present genetic evidence in zebrafish that three major signaling pathways - Jagge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 123 شماره
صفحات -
تاریخ انتشار 1996